Univariate | Multivariate | ||
Binomial(n,p) | \binom{n}{x}p^x(1-p)^{n-x} | Multinomial(n,p_1,\cdots,p_k) | \frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}, \sum x_i = n |
Normal(\mu,\sigma^2) | (2\pi\sigma^2)^{-1/2}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} | Multivariate Normal(\mu, \Sigma) | (2\pi)^{-\frac{k}{2}}|\Sigma|^{-\frac{1}{2}}\exp\left\{(x-\mu)'\Sigma^{-1}(x-\mu)\right\} |
Gamma(\alpha,\beta) | \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^\alpha} | Wishart(n,\Sigma) | |
Beta(\alpha, \beta) | \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\text{B}(\alpha,\beta)} | Dirichlet(\alpha_1,\cdots,\alpha_{k+1}) |
- Exponential(\beta): Gamma(\alpha=1, \beta)
- Chi-squared(k): Gamma(\alpha=k/2, \beta=1/2)
- Uniform(0,1): Beta(\alpha=1, \beta=1)
역감마분포 Inverse-gamma distribution
1/X가 Gamma 분포를 따르면 X는 Inverse-gamma 분포를 따른다고 한다.
f(x) = \frac{\beta^\alpha)}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta/x}
디리클레 분포 Dirichlet distribution
디리클레 분포의 pdf:f(x_1,\cdots,x_{k};\alpha_1,\cdots,\alpha_{k+1}) = \frac{\Gamma(\sum_{i=1}^{k+1}\alpha_i)}{\prod_{i=1}^{k+1}\Gamma(\alpha_i)}\prod_{i=1}^{k+1} x_i^{\alpha_i -1 }
위샤트 분포 Wishart distribution
다변량정규분포를 따르는 n개의 iid 확률벡터 X_1,\cdots,X_n \stackrel{iid}{\sim} N(0,\Sigma)가 있을 때\sum_{i=1}^n X_iX_i^T \sim \text{Wishart}(n,\Sigma)
이다.
댓글 없음:
댓글 쓰기